Berita Terkini

Post Top Ad

WBBK



Sabtu, 05 Oktober 2019

Modul Matematika - Matriks






Apa itu Matriks?



Pengertian matriks adalah kumpulan bilangan (atau unsur) yang disusun menurut baris dan kolom tertentu. Bilangan-bilangan yang disusun tersebut dinamakan eleme-elemen atau komponen-komponen matriks. Nama sebuah matriks biasanya dinyatakan dengan huruf kapital. Dalam sebuah matriks ada istilah ordo. Yang dimaksud dengan ordo atau ukuran matriks adalah banyaknya baris x banyak kolom dalam sebuah matriks.
Contoh :



Sama halnya dengan penjumlahan, pengurangan dapat dilakukan hanya jika dua matriks atau lebih, memiliki ordo yang sama. Pengurangan dilakukan terhadap elemen-elemen yang berposisi sama.
Contoh:
Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan B = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix},
maka:
B - A = \begin{pmatrix} 3 & 6 \\ 4 & 7 \\ 5 & 8 \end{pmatrix} - \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}
= \begin{pmatrix} 3-1 & 6-4 \\ 4-2 & 7-5 \\ 5-3 & 8-6 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \\ 2 & 2 \end{pmatrix}
Sifat dari penjumlahan dan pengurangan matriks:
  • A + B = B + A
  • (A + B) + C = A + (B + C)
  • A – B ≠ B – A

Perkalian Matriks

Matriks dapat dikalikan dengan sebuah bilangan bulat atau dengan matriks lain. Kedua perkalian tersebut memiliki syarat-syarat masing-masing.

Perkalian Matriks dengan bilangan bulat

Suatu matriks dapat dikalikan dengan bilangan bulat, maka hasil perkalian tersebut berupa matriks dengan elemen-elemennya yang merupakan hasil kali antara bilangan dan elemen-elemen matriks tersebut. Jika matriks A dikali dengan bilangan r, maka r.A = (r.a_{ij}). Contoh:
Jika \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} dan bilangan r = 2, maka:
r.A = 2 . \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 2.1 & 2.4 \\ 2.2 & 2.5 \\ 2.3 & 2.6 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 4 & 10 \\ 6 & 12 \end{pmatrix}
Perkalian matriks dengan bilangan bulat dikombinasikan dengan penjumlahan atau pengurangan matriks dapat dilakukan pada matriks dengan ordo sama. Berikut sifat-sifat perkaliannya:
  • r(A + B) = rA + rB
  • r(A – B) = rA – rB

Perkalian dua matriks

Perkalian antara dua matriks yaitu matriks A dan B, dapat dilakukan jika jumlah kolom A sama dengan jumlah baris B. Perkalian tersebut menghasilkan suatu matriks dengan jumlah baris sama dengan matriks A dan jumlah saman dengan matriks B, sehingga:
perkalian matriks

Download Modul

Post Top Ad

Your Ad Spot